
Chapter IX • Arrays 175

IX
Arrays

CHAPTER

A big part of C’s popularity is due to the way it handles arrays. C handles arrays very

efficiently for three reasons.

First, except for some interpreters that are helpfully paranoid, array subscripting is done

at a very low level. There’s not enough information at runtime to tell how long an array

is, or whether a subscript is valid. The language of the ANSI/ISO C standard says that

if you use an invalid subscript, the behavior is undefined. That means that your program

can (a) work correctly, maybe, (b) halt or crash dramatically, (c) continue running but

get the wrong answer, or (d) none of the above. You don’t know what your program will

do. This is a Bad Thing. Some people use this weakness as justification to criticize C as

merely a high-level assembler language. Certainly, when C programs fail, they can fail

spectacularly. But when they’re written and tested well, they run fast.

Second, arrays and pointers work very well together. When used in an expression, the

value of an array is the same as a pointer to its first element. That makes pointers and arrays

almost interchangeable. Using pointers can be twice as fast as using array subscripts.

(See FAQ IX.5 for an example.)

Third, when an array is passed as a parameter to a function, it’s exactly as if a pointer to

the first element was passed. There’s no feature built into the C language for copying the

contents of arrays (“call by value”). (Structures that contain arrays are copied, which

might seem inconsistent.) Just the address (“call by reference”) is much faster than call

by value. C++ and ANSI C have the const keyword, which allows call by reference to be

as safe as call by value. For details, see FAQ II.4 and the beginning of Chapter VII,

“Pointers and Memory Allocation.”

C Programming: Just the FAQs176

The equivalence of array and pointer parameters causes some confusion. A function defined as

voi d f (char a[MAX])

{

 / * . . . * /

}

(in which MAX is a #def i ned “manifest constant” or some other value known at compile time) is exactly the

same as this:

voi d f (char * a)

{

 / * . . . * /

}

This equivalence is the third advantage described previously. Most C programmers learn it early. It’s

confusing because it’s the only case in which pointers and arrays mean exactly the same thing. If you write

(anywhere but in the declaration of a function parameter)

char a[MAX] ;

then space is made for MAX characters. If you write

char * a;

instead, then space is made for a char pointer, which is probably only as big as two or four char s. This can

be a real disaster if you define

char a[MAX] ;

in a source file but declare

ext er n char * a;

in a header file. The best way to check this is to always have the declaration visible (by #i nc l udeing the

appropriate header file) when making a definition.

If you define

char a[MAX] ;

in a source file, you can declare

ext er n char a[] ;

in the appropriate header file. This tells any #i nc l udeing files that a is an array, not a pointer. It doesn’t say

how long a is. This is called an “incomplete” type. Using incomplete types this way is a common practice,

and a good one.

IX.1: Do array subscripts always start with zero?
Answer:

Yes. If you have an array a[MAX] (in which MAX is some value known at compile time), the first element is a[0] ,

and the last element is a[MAX- 1] . This arrangement is different from what you would find in some other

Chapter IX • Arrays 177

languages. In some languages, such as some versions of BASIC, the elements would be a[1] through a[MAX] ,

and in other languages, such as Pascal, you can have it either way.

WARNING
a[MAX] is a valid address, but the value there is not an element of array a (see FAQ IX.2).

This variance can lead to some confusion. The “first element” in non-technical terms is the “zero’th” element

according to its array index. If you’re using spoken words, use “first” as the opposite of “last.” If that’s not

precise enough, use pseudo-C. You might say, “The elements a sub one through a sub eight,” or, “The second

through ninth elements of a.”

There’s something you can do to try to fake array subscripts that start with one. Don’t do it. The technique

is described here only so that you’ll know why not to use it.

Because pointers and arrays are almost identical, you might consider creating a pointer that would refer to

the same elements as an array but would use indices that start with one. For example:

/ * don’ t do t hi s ! ! ! * /

i nt a0[MAX] ;

i nt * a1 = a0 - 1; / * & a[- 1] * /

Thus, the first element of a0 (if this worked, which it might not) would be the same as a1[1] . The last element

of a0, a0[MAX- 1] , would be the same as a1[MAX] . There are two reasons why you shouldn’t do this.

The first reason is that it might not work. According to the ANSI/ISO standard, it’s undefined (which is a

Bad Thing). The problem is that &a[- 1] might not be a valid address; see FAQ IX.3. Your program might

work all the time with some compilers, and some of the time with all compilers. Is that good enough?

The second reason not to do this is that it’s not C-like. Part of learning C is to learn how array indices work.

Part of reading (and maintaining) someone else’s C code is being able to recognize common C idioms. If you

do weird stuff like this, it’ll be harder for people to understand your code. (It’ll be harder for you to understand

your own code, six months later.)

Cross Reference:
IX.2: Is it valid to address one element beyond the end of an array?

IX.3: Why worry about the addresses of the elements beyond the end of an array?

IX.2: Is it valid to address one element beyond the end
of an array?

Answer:
It’s valid to address it, but not to see what’s there. (The really short answer is, “Yes, so don’t worry about it.”)

With most compilers, if you say

i nt i , a[MAX] , j ;

C Programming: Just the FAQs178

then either i or j is at the part of memory just after the last element of the array. The way to see whether i

or j follows the array is to compare their addresses with that of the element following the array. The way to

say this in C is that either

& i == & a[MAX]

is true or

& a[MAX] == & j

is true. This isn’t guaranteed; it’s just the way it usually works.

The point is, if you store something in a[MAX] , you’ll usually clobber something outside the a array. Even

looking at the value of a[MAX] is technically against the rules, although it’s not usually a problem.

Why would you ever want to say &a[MAX] ? There’s a common idiom of going through every member of a

loop using a pointer (see FAQ IX.5). Instead of

f or (i = 0; i < MAX; ++i)

{

 / * do somet hi ng * / ;

}

C programmers often write this:

f or (p = a; p < & a[MAX] ; ++p)

{

 / * do somet hi ng * / ;

}

The kind of loop shown here is so common in existing C code that the C standard says it must work.

Cross Reference:
IX.3: Why worry about the addresses of the elements beyond the end of an array?

IX.5: Is it better to use a pointer to navigate an array of values, or is it better to use a subscripted

array name?

IX.3: Why worry about the addresses of the elements beyond
the end of an array?

Answer:
If your programs ran only on nice machines on which the addresses were always between 0x00000000 and

0xFFFFFFFF (or something similar), you wouldn’t need to worry. But life isn’t always that simple.

Sometimes addresses are composed of two parts. The first part (often called the “base”) is a pointer to the

beginning of some chunk of memory; the second part is an offset from the beginning of that chunk. The most

notorious example of this is the Intel 8086, which is the basis for all MS-DOS programs. (Your shiny new

Chapter IX • Arrays 179

Pentium chip runs most MS-DOS applications in 8086 compatibility mode.) This is called a “segmented

architecture.” Even nice RISC chips with linear address spaces have register indexing, in which one register

points to the beginning of a chunk, and the second is an offset. Subroutine calls are usually implemented with

an offset from a stack pointer.

What if your program was using base/offset addresses, and some array a0 was the first thing in the chunk of

memory being pointed to? (More formally, what if the base pointer was the same as & a0[0] ?) The point

is, because the base can’t be changed (efficiently) and the offset can’t be negative, there might not be a valid

way of saying “the element before a0[0] .” The ANSI C standard specifically says attempts to get at this

element are undefined. That’s why the idea discussed in FAQ IX.1 might not work.

The only other time there could be a problem with the address of the element beyond the end of an array

is if the array is the last thing that fits in memory (or in the current memory segment). If the last element

of a (that is, a[MAX- 1]) is at the last address in memory, what’s the address of the element after it? There isn’t

one. The compiler must complain that there’s not enough room for the array, if that’s what it takes to ensure

that &a[MAX] is valid.

You can say you’ll only ever write programs for Windows or UNIX or Macintoshes. The people who defined

the C programming language don’t have that luxury. They had to define C so that it would work in weird

environments, such as microprocessor-controlled toasters and anti-lock braking systems and MS-DOS.

They defined it so that programs written strictly by the rules can be compiled and run for almost anything.

Whether you want to break the strict rules sometimes is between you, your compiler, and your customers.

Cross Reference:
IX.1: Do array subscripts always start with zero?

IX.2: Is it valid to address one element beyond the end of an array?

IX.4: Can the sizeof operator be used to tell the size of an array
passed to a function?

Answer:
No. There’s no way to tell, at runtime, how many elements are in an array parameter just by looking at the

array parameter itself. Remember, passing an array to a function is exactly the same as passing a pointer to

the first element. This is a Good Thing. It means that passing pointers and arrays to C functions is very

efficient.

It also means that the programmer must use some mechanism to tell how big such an array is. There are two

common ways to do that. The first method is to pass a count along with the array. This is what memcpy()

does, for example:

char sour ce[MAX] , dest [MAX] ;

/ * . . . * /

memcpy(dest , sour ce, MAX) ;

C Programming: Just the FAQs180

The second method is to have some convention about when the array ends. For example, a C “string” is just

a pointer to the first character; the string is terminated by an ASCII NUL (‘ \ 0’) character. This is also

commonly done when you have an array of pointers; the last is the null pointer. Consider the following

function, which takes an array of char * s. The last char * in the array is NULL; that’s how the function knows

when to stop.

voi d pr i nt Many(char * s t r i ngs[])

{

 i nt i ;

 i = 0;

 whi l e (s t r i ngs[i] ! = NULL)

 {

 put s(s t r i ngs[i]) ;

 ++i ;

 }

}

Most C programmers would write this code a little more cryptically:

voi d pr i nt Many(char * s t r i ngs[])

{

 whi l e (* s t r i ngs)

 {

 put s(* s t r i ngs++) ;

 }

}

As discussed in FAQ IX.5, C programmers often use pointers rather than indices. You can’t change the value

of an array tag, but because st r i ngs is an array parameter, it’s really the same as a pointer (see FAQ IX.6).

That’s why you can increment st r i ngs. Also,

whi l e (* s t r i ngs)

means the same thing as

whi l e (* s t r i ngs ! = NULL)

and the increment can be moved up into the call to put s() .

If you document a function (if you write comments at the beginning, or if you write a “manual page” or a

design document), it’s important to describe how the function “knows” the size of the arrays passed to it.

This description can be something simple, such as “null terminated,” or “el ephant s has numEl ephant s

elements.” (Or “ar r should have 13 elements,” if your code is written that way. Using hard coded numbers

such as 13 or 64 or 1024 is not a great way to write C code, though.)

Cross Reference:
IX.5: Is it better to use a pointer to navigate an array of values, or is it better to use a subscripted

array name?

IX.6: Can you assign a different address to an array tag?

Chapter IX • Arrays 181

IX.5: Is it better to use a pointer to navigate an array of values,
or is it better to use a subscripted array name?

Answer:
It’s easier for a C compiler to generate good code for pointers than for subscripts.

Say that you have this:

/ * X i s some t ype * /

X a[MAX] ; / * ar r ay * /

X * p; / * poi nt er * /

X x ; / * el ement * /

i nt i ; / * i ndex * /

Here’s one way to loop through all elements:

/ * ver si on (a) * /

f or (i = 0; i < MAX; ++i)

{

 x = a[i] ;

 / * do somet hi ng wi t h x * /

}

On the other hand, you could write the loop this way:

/ * ver si on (b) * /

f or (p = a; p < & a[MAX] ; ++p)

{

 x = * p;

 / * do somet hi ng wi t h x * /

}

What’s different between these two versions? The initialization and increment in the loop are the same. The

comparison is about the same; more on that in a moment. The difference is between x=a[i] and x=* p. The

first has to find the address of a[i] ; to do that, it needs to multiply i by the size of an X and add it to the address

of the first element of a. The second just has to go indirect on the p pointer. Indirection is fast; multiplication

is relatively slow.

This is “micro efficiency.” It might matter, it might not. If you’re adding the elements of an array, or simply

moving information from one place to another, much of the time in the loop will be spent just using the array

index. If you do any I/O, or even call a function, each time through the loop, the relative cost of indexing

will be insignificant.

Some multiplications are less expensive than others. If the size of an X is 1, the multiplication can be optimized

away (1 times anything is the original anything). If the size of an X is a power of 2 (and it usually is if X is any

of the built-in types), the multiplication can be optimized into a left shift. (It’s like multiplying by 10 in

base 10.)

C Programming: Just the FAQs182

What about computing &a[MAX] every time though the loop? That’s part of the comparison in the pointer

version. Isn’t it as expensive computing a[i] each time? It’s not, because &a[MAX] doesn’t change during the

loop. Any decent compiler will compute that, once, at the beginning of the loop, and use the same value each

time. It’s as if you had written this:

/ * how t he compi l er i mpl ement s ver s i on (b) * /

X * t emp = & a[MAX] ; / * opt i mi zat i on * /

f or (p = a; p < t emp; ++p)

{

 x = * p;

 / * do somet hi ng wi t h x * /

}

This works only if the compiler can tell that a and MAX can’t change in the middle of the loop.

There are two other versions; both count down rather than up. That’s no help for a task such as printing the

elements of an array in order. It’s fine for adding the values or something similar. The index version presumes

that it’s cheaper to compare a value with zero than to compare it with some arbitrary value:

/ * ver si on (c) * /

f or (i = MAX - 1; i >= 0; - - i)

{

 x = a[i] ;

 / * do somet hi ng wi t h x * /

}

The pointer version makes the comparison simpler:

/ * ver si on (d) * /

f or (p = & a[MAX - 1] ; p >= a; - - p)

{

 x = * p;

 / * do somet hi ng wi t h x * /

}

Code similar to that in version (d) is common, but not necessarily right. The loop ends only when p is less

than a. That might not be possible, as described in FAQ IX.3.

The common wisdom would finish by saying, “Any decent optimizing compiler would generate the same

code for all four versions.” Unfortunately, there seems to be a lack of decent optimizing compilers in the

world. A test program (in which the size of an X was not a power of 2 and in which the “do something” was

trivial) was built with four very different compilers. Version (b) always ran much faster than version (a),

sometimes twice as fast. Using pointers rather than indices made a big difference. (Clearly, all four compilers

optimize &a[MAX] out of the loop.)

How about counting down rather than counting up? With two compilers, versions (c) and (d) were about

the same as version (a); version (b) was the clear winner. (Maybe the comparison is cheaper, but decrementing

is slower than incrementing?) With the other two compilers, version (c) was about the same as version (a)

(indices are slow), but version (d) was slightly faster than version (b).

So if you want to write portable efficient code to navigate an array of values, using a pointer is faster than

using subscripts. Use version (b); version (d) might not work, and even if it does, it might be compiled into

slower code.

Chapter IX • Arrays 183

Most of the time, though, this is micro-optimizing. The “do something” in the loop is where most of the

time is spent, usually. Too many C programmers are like half-sloppy carpenters; they sweep up the sawdust

but leave a bunch of two-by-fours lying around.

Cross Reference:
IX.2: Is it valid to address one element beyond the end of an array?

IX.3: Why worry about the addresses of the elements beyond the end of an array?

IX.6: Can you assign a different address to an array tag?
Answer:

No, although in one common special case, it looks as if you can.

An array tag is not something you can put on the left side of an assignment operator. (It’s not an “lvalue,”

let alone a “modifiable lvalue.”) An array is an object; the array tag is a pointer to the first element in that

object.

For an external or static array, the array tag is a constant value known at link time. You can no more change

the value of such an array tag than you can change the value of 7.

Assigning to an array tag would be missing the point. An array tag is not a pointer. A pointer says, “Here’s

one element; there might be others before or after it.” An array tag says, “Here’s the first element of an array;

there’s nothing before it, and you should use an index to find anything after it.” If you want a pointer, use

a pointer.

In one special case, it looks as if you can change an array tag:

voi d f (char a[12])

{

 ++a; / * l egal ! * /

}

The trick here is that array parameters aren’t really arrays. They’re really pointers. The preceding example

is equivalent to this:

voi d f (char * a)

{

 ++a; / * cer t ai nl y l egal * /

}

You can write this function so that the array tag can’t be modified. Oddly enough, you need to use pointer

syntax:

voi d f (char * const a)

{

 ++a; / * i l l egal * /

}

Here, the parameter is an lvalue, but the const keyword means it’s not modifiable.

C Programming: Just the FAQs184

Cross Reference:
IX.4: Can the si zeof operator be used to tell the size of an array passed to a function?

IX.7: What is the difference between array_name and
&array_name?

Answer:
One is a pointer to the first element in the array; the other is a pointer to the array as a whole.

NOTE
It’s strongly suggested that you put this book down for a minute and write the declaration of a

variable that points to an array of MAX characters. Hint: Use parentheses. If you botch this

assignment, what do you get instead? Playing around like this is the only way to learn the arcane

syntax C uses for pointers to complicated things. The solution is at the end of this answer.

An array is a type. It has a base type (what it’s an array of), a size (unless it’s an “incomplete” array), and a

value (the value of the whole array). You can get a pointer to this value:

char a[MAX] ; / * ar r ay of MAX char act er s * /

char * p; / * poi nt er t o one char act er * /

/ * pa i s decl ar ed bel ow * /

pa = & a;

p = a; / * = & a[0] * /

After running that code fragment, you might find that p and pa would be printed as the same value; they both

point to the same address. They point to different types of MAX characters.

The wrong answer is

char * (ap[MAX]) ;

which is the same as this:

char * ap[MAX] ;

This code reads, “ap is an array of MAX pointers to characters.”

Cross Reference:
None.

Chapter IX • Arrays 185

IX.8: Why can’t constant values be used to define an array’s
initial size?

Answer:
There are times when constant values can be used and there are times when they can’t. A C program can use

what C considers to be constant expressions, but not everything C++ would accept.

When defining the size of an array, you need to use a constant expression. A constant expression will always

have the same value, no matter what happens at runtime, and it’s easy for the compiler to figure out what

that value is. It might be a simple numeric literal:

char a[512] ;

Or it might be a “manifest constant” defined by the preprocessor:

#def i ne MAX 512

/ * . . . * /

char a[MAX] ;

Or it might be a si zeof :

char a[s i zeof (s t r uct cacheObj ect)] ;

Or it might be an expression built up of constant expressions:

char buf [si zeof (s t r uct cacheObj ect) * MAX] ;

Enumerations are allowed too.

An initialized const i nt variable is not a constant expression in C:

i nt max = 512; / * not a const ant expr ess i on i n C * /

char buf f er [max] ; / * not val i d C * /

Using const i nt s as array sizes is perfectly legal in C++; it’s even recommended. That puts a burden on C++

compilers (to keep track of the values of const i nt variables) that C compilers don’t need to worry about.

On the other hand, it frees C++ programs from using the C preprocessor quite so much.

Cross Reference:
XV.1: Should C++ additions to a compiler be used in a C program?

XV.2: What is the difference between C++ and C?

C Programming: Just the FAQs186

IX.9: What is the difference between a string and an array?
Answer:

An array is an array of anything. A string is a specific kind of an array with a well-known convention to

determine its length.

There are two kinds of programming languages: those in which a string is just an array of characters, and those

in which it’s a special type. In C, a string is just an array of characters (type char), with one wrinkle: a C string

always ends with a NUL character. The “value” of an array is the same as the address of (or a pointer to) the

first element; so, frequently, a C string and a pointer to char are used to mean the same thing.

An array can be any length. If it’s passed to a function, there’s no way the function can tell how long the array

is supposed to be, unless some convention is used. The convention for strings is NUL termination; the last

character is an ASCII NUL (‘ \ 0’) character.

In C, you can have a literal for an integer, such as the value of 42; for a character, such as the value of ‘ * ’ ;

or for a floating-point number, such as the value of 4. 2e1 for a f l oat or doubl e.

NOTE
Actually, what looks like a type char literal is just a type i nt literal with a funny syntax. 42 and ‘ * ’

are exactly the same value. This isn’t the case for C++, which has true char literals and function

parameters, and which generally distinguishes more carefully between a char and an i nt .

There’s no such thing as a literal for an array of integers, or an arbitrary array of characters. It would be very

hard to write a program without string literals, though, so C provides them. Remember, C strings

conventionally end with a NUL character, so C string literals do as well. “si x t i mes ni ne” is 15 characters

long (including the NUL terminator), not just the 14 characters you can see.

There’s a little-known, but very useful, rule about string literals. If you have two or more string literals, one

after the other, the compiler treats them as if they were one big string literal. There’s only one terminating

NUL character. That means that “ Hel l o, “ “ wor l d” is the same as “ Hel l o, wor l d” , and that

char message[] =

 “ Thi s i s an ext r emel y l ong pr ompt \ n”

 “ How l ong i s i t ?\ n”

 “ I t ’ s so l ong, \ n”

 “ I t woul dn’ t f i t on one l i ne\ n” ;

is exactly the same as some code that wouldn’t fit on this page of the book.

When defining a string variable, you need to have either an array that’s long enough or a pointer to some

area that’s long enough. Make sure that you leave room for the NUL terminator. The following example code

has a problem:

char gr eet i ng[12] ;

s t r cpy(gr eet i ng, “ Hel l o, wor l d”) ; / * t r oubl e * /

C Programming: Just the FAQs188

Chapter IX • Arrays 187

There’s a problem because gr eet i ng has room for only 12 characters, and “ Hel l o, wor l d” is 13 characters

long (including the terminating NUL character). The NUL character will be copied to someplace beyond

the gr eet i ng array, probably trashing something else nearby in memory. On the other hand,

char gr eet i ng[12] = “ Hel l o, wor l d” ; / * not a s t r i ng * /

is OK if you treat gr eet i ng as a char array, not a string. Because there wasn’t room for the NUL terminator,

the NUL is not part of gr eet i ng. A better way to do this is to write

char gr eet i ng[] = “ Hel l o, wor l d” ;

to make the compiler figure out how much room is needed for everything, including the terminating NUL

character.

String literals are arrays of characters (type char), not arrays of constant characters (type const char). The

ANSI C committee could have redefined them to be arrays of const char , but millions of lines of code would

have screamed in terror and suddenly not compiled. The compiler won’t stop you from trying to modify the

contents of a string literal. You shouldn’t do it, though. A compiler can choose to put string literals in some

part of memory that can’t be modified—in ROM, or somewhere the memory mapping registers will forbid

writes. Even if string literals are someplace where they could be modified, the compiler can make them shared.

For example, if you write

char * p = “ message” ;

char * q = “ message” ;

p[4] = ‘ \ 0’ ; / * p now poi nt s t o “ mess” * /

(and the literals are modifiable), the compiler can take one of two actions. It can create two separate string

constants, or it can create just one (that both p and q point to). Depending on what the compiler did, q might

still be a message, or it might just be a mess.

NOTE
This is “C humor.” Now you know why so few programmers quit their day jobs for

stand-up comedy.

Cross Reference:
IX.1: Do array subscripts always start with zero?

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

